Home
Disclaimer
Required Tools
1.
Big Data Overview
1.1.
Introduction
1.2.
Job Opportunities
1.3.
What is Data?
1.4.
How does it help?
1.5.
Types of Data
1.6.
The Big V's
1.6.1.
Variety
1.6.2.
Volume
1.6.3.
Velocity
1.6.4.
Veracity
1.6.5.
Other V's
1.7.
Trending Technologies
1.8.
Big Data Concerns
1.9.
Big Data Challenges
1.10.
Data Integration
1.11.
Scaling
1.12.
Cap Theorem
1.13.
Optimistic Concurrency
1.14.
Eventual Consistency
1.15.
Concurrent vs Parallel
1.16.
GPL
1.17.
DSL
1.18.
Big Data Tools
1.19.
NO Sql Databases
1.20.
Learning Big Data means?
2.
Developer Tools
2.1.
Introduction
2.2.
UV
2.3.
Other Python Tools
2.4.
Duck DB
2.5.
JQ
3.
Data Format
3.1.
Introduction
3.2.
Common Data Formats
3.3.
JSON
3.4.
Parquet
3.5.
Arrow
3.6.
Delta
3.7.
SerDe
4.
Protocol
4.1.
Introduction
4.2.
HTTP
4.3.
Monolithic Architecture
4.4.
Statefulness
4.5.
Microservices
4.6.
Statelessness
4.7.
Idempotency
4.8.
REST API
4.9.
API Performance
4.10.
API in Big Data world
5.
Advanced Python
5.1.
Functional Programming Concepts
5.2.
Decorator
5.3.
Python Classes
5.4.
Unit Testing
5.5.
Data Frames
5.6.
Error Handling
5.7.
Logging
Tags
Light
Rust
Coal
Navy
Ayu
Big Data Tools & Techniques
[Avg. reading time: 1 minute]
The Big V’s of Big Data
Variety
Volume
Velocity
Veracity
Other V’s
#bigv
#bigdata
Ver 6.0.1